WO2021197159A1 - 作为dna-pk抑制剂的大环类化合物 - Google Patents

作为dna-pk抑制剂的大环类化合物 Download PDF

Info

Publication number
WO2021197159A1
WO2021197159A1 PCT/CN2021/082686 CN2021082686W WO2021197159A1 WO 2021197159 A1 WO2021197159 A1 WO 2021197159A1 CN 2021082686 W CN2021082686 W CN 2021082686W WO 2021197159 A1 WO2021197159 A1 WO 2021197159A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
solution
reduced pressure
under reduced
Prior art date
Application number
PCT/CN2021/082686
Other languages
English (en)
French (fr)
Inventor
陈新海
夏尚华
陈兆国
郭祖浩
于衍新
周凯
胡伯羽
张丽
姜奋
王晶晶
胡国平
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2021197159A1 publication Critical patent/WO2021197159A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom

Definitions

  • the present invention relates to a DNA-PK inhibitor, in particular to a compound represented by formula (III) or a pharmaceutically acceptable salt thereof, and its application in the preparation of drugs related to DNA-PK inhibitors.
  • DNA breaks especially double-strand breaks (DSBs) are extremely serious damages that can cause loss of genetic material, gene recombination, and lead to cancer or cell death.
  • Eukaryotic cells have evolved a variety of mechanisms to deal with the serious threats caused by DNA double-strand breaks. This is the DNA damage response mechanism (DDR), which mainly includes DNA damage detection, signal transduction, and damage repair.
  • DDR DNA damage response mechanism
  • DNA double-strand break repair mainly includes homologous end joining (HR) repair and non-homologous end joining (NHEJ) repair. In higher eukaryotes, NHEJ repair, which is preferentially used during the early G1/S phase, is the main mechanism.
  • DDR initial damage factors such as MRN will detect and recognize the damage site, recruit phosphoinositide kinase family members (ATM, ATR, DNA-PK), phosphorylate H2AX to promote the formation of ⁇ H2AX, guide downstream signal transduction and recruit related proteins to complete the receptor. Repair of damaged DNA.
  • DNA-PK catalytic subunit which belongs to the PI3K-related kinase (PIKK) family, mainly targets non-homologous DNA double-strand breaks End join (NHEJ) repair is an important member of DNA damage repair.
  • NHEJ non-homologous DNA double-strand breaks End join
  • the Ku70/Ku80 heterodimer specifically connects to the double-stranded damage through a pre-formed channel, recognizes double-strand breaks and binds to the broken ends separately, and then follows the DNA in an ATP-dependent manner. The strands slid a certain distance to both ends to form a KU-DNA complex and recruit DNA-PKcs to bind to the double-strand break.
  • DNA-damaging chemotherapeutics such as bleomycin, topoisomerase II inhibitors such as etoposide and doxorubicin
  • DNA-PK DNA-damaging chemotherapeutics
  • bleomycin bleomycin
  • topoisomerase II inhibitors such as etoposide and doxorubicin
  • doxorubicin DNA-damaging chemotherapeutics
  • DNA-PK inhibitors can inhibit the activity of DNA-PKcs, thereby greatly reducing tumor DNA repair, inducing cells to enter the apoptosis process, and achieving better therapeutic effects.
  • DNA-PK inhibitors can also be used as single drugs to exert therapeutic effects in tumors with defects in other DNA repair pathways.
  • the DNA-PK small molecule inhibitor of the present invention can not only be used as a single drug to exert a therapeutic effect on tumors with defects in other DNA repair pathways. It can also be used in combination with radiotherapy and chemotherapy drugs to enhance the sensitivity of tumor tissues to radiotherapy and chemotherapy, overcome the problem of drug resistance, and enhance the inhibitory effect on a variety of solid tumors and hematomas. Such compounds have good activity and show excellent effects and functions, and have broad prospects.
  • the invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • L 1 is selected from -(CH 2 ) n -, -O(CH 2 ) p -,
  • L 2 is selected from C 1-3 alkyl, C 2-3 alkenyl and C 2-3 alkynyl;
  • R 1 is selected H, OH, F, Cl, Br, I , and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • R a is selected from H, F, Cl, Br and I;
  • n is selected from 1, 2 and 3;
  • p is selected from 1, 2 and 3;
  • Y 1 is selected from cyclopropyl and C 1-3 alkyl, the C 1-3 alkyl is optionally substituted with 1, 2, 3, 4 or 5 F;
  • Y 2 is selected from F, Cl, Br, I, cyclopropyl and C 1-3 alkyl, said C 1-3 alkyl optionally substituted by OH or 4 or 5 F.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • L 1 is selected from -(CH 2 ) n -, -O(CH 2 ) p -,
  • L 2 is selected from C 1-3 alkyl, C 2-3 alkenyl and C 2-3 alkynyl;
  • R 1 is selected H, OH, F, Cl, Br, I , and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • R a is selected from H, F, Cl, Br and I;
  • n is selected from 1, 2 and 3;
  • p is selected from 1, 2 and 3.
  • the aforementioned L 1 is selected from -CH 2 -, -CH 2 CH 2 -, -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, Other variables are as defined in the present invention.
  • R 1 is selected from H, F and OCH 3 , and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from
  • q is selected from 1 and 2;
  • R 1 and L 2 are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from
  • n 1 and 2;
  • q is selected from 1 and 2;
  • R 1 is as defined in the present invention.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • L 1 is selected from -(CH 2 ) n -, -O(CH 2 ) p -,
  • L 2 is selected from C 1-3 alkyl, C 2-3 alkenyl and C 2-3 alkynyl;
  • R 1 is selected H, OH, F, Cl, Br, I , and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • R a is selected from H, F, Cl, Br and I;
  • n is selected from 1, 2 and 3;
  • p is selected from 1, 2 and 3.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • L 1 is selected from -(CH 2 ) n -and -O(CH 2 ) p -;
  • R 1 is selected H, OH, F, Cl, Br, I , and a C 1-3 alkoxy group, a C 1-3 alkoxy said alkoxy optionally substituted with 1, 2 or 3 R a;
  • n is selected from 1 and 2;
  • p is selected from 2 and 3;
  • R a is selected from H, F, Cl, Br, I.
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is used in the preparation of drugs related to DNA-PK inhibitors.
  • the above-mentioned DNA-PK inhibitor-related drugs as a single drug exert a therapeutic effect on tumors with defects in other DNA repair pathways.
  • the above-mentioned DNA-PK inhibitor-related drugs are combined with radiochemotherapeutic drugs to enhance the inhibitory effect on solid tumors and hematomas.
  • the compound of the present invention exhibits significant DNA-PK kinase inhibitory activity.
  • the PK results show that the compound of the present invention has excellent pharmacokinetic properties and is a very good molecule that can be developed for oral administration.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the relationship between the molecules is non-mirror-image relationship.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key Or straight dashed key
  • the term “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refers to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the substituent can be bonded with any atom on the ring, for example, a structural unit It means that the substituent R can be substituted at any position on the cyclohexyl or cyclohexadiene.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence number ⁇ The group.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • the number of atoms in a ring is generally defined as the number of ring members.
  • “5-7 membered ring” refers to a “ring” in which 5-7 atoms are arranged around.
  • 3-10 membered ring means a cycloalkyl, heterocycloalkyl, cycloalkenyl, or heterocycloalkenyl composed of 3 to 10 ring atoms.
  • the ring includes a single ring, as well as a bicyclic or polycyclic ring system such as a spiro ring, a fused ring, and a bridged ring.
  • the ring optionally contains 1, 2, or 3 heteroatoms independently selected from O, S, and N.
  • the 3-10 membered ring includes 3-10 member, 3-9 member, 3-8 member, 3-7 member, 3-6 member, 3-5 member, 4-10 member, 4-9 member, 4- 8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6 9-membered, 6-8-membered and 6-7-membered rings, etc.
  • 5-7 membered heterocycloalkyl includes piperidinyl and the like, but does not include phenyl.
  • ring also includes a ring system containing at least one ring, where each "ring" independently meets the above definition.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Example C 1- 3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n- propyl and isopropyl) and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 2-3 alkenyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 3 carbon atoms containing at least one carbon-carbon double bond, and a carbon-carbon double bond It can be located in any position of the group.
  • the C 2-3 alkenyl group includes C 3 and C 2 alkenyl groups; the C 2-3 alkenyl group may be monovalent, divalent or multivalent. Examples of C 2-3 alkenyl include, but are not limited to, vinyl, propenyl, and the like.
  • C 2-3 alkynyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 3 carbon atoms containing at least one carbon-carbon triple bond, and a carbon-carbon triple bond It can be located in any position of the group. It can be univalent, bivalent, or multivalent.
  • the C 2-3 alkynyl group includes C 3 and C 2 alkynyl groups. Examples of C 2-3 alkynyl include, but are not limited to, ethynyl, propynyl, and the like.
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4, C 5, C 6, C 7, C 8, C 9, C 10, C 11, and C 12, also including any one of n + m to n ranges, for example C 1- 3 comprises a C 1-12 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, from n to n +m member means that the number of atoms in the ring is from n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered ring , 10-membered ring, 11-member
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultured single crystal.
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • eq stands for equivalent
  • DMSO dimethyl sulfoxide
  • EDTA ethylenediaminetetraacetic acid
  • DNA stands for deoxyribonucleic acid
  • ATP adenosine triphosphate
  • PEG polyethylene glycol
  • GST glutathion Glycine S transferase
  • Balb/c represents the mouse strain.
  • N-dimethylformamide (70mL) solution of compound 4d (6.5g, 32.08mmol, 1eq) was added imidazole (10.92g, 160.38mmol, 5eq) and tert-butyldimethylchlorosilane ( 24.17g, 160.38mmol, 5eq), after addition, react at 20°C for 2 hours.
  • Tetrabutylammonium fluoride (5.71g, 21.85mmol, 21.85mL, 2eq) was added to the compound 4g (3.9g, 10.93mmol, 1eq) in tetrahydrofuran (50mL) solution, and the reaction solution was added and reacted at 20°C for 1 hour . After the reaction was completed, the reaction solution was diluted with water (20 mL), extracted with ethyl acetate (20 mL*3), washed with saturated brine (20 mL), dried with anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain the crude compound for 4 h. MS: m/z.242.8[M+H] + ;
  • MS m/z 362.1 [M+H] + ;
  • MS m/z 364.4[M+H] + ;
  • Trifluoroacetic acid (5 mL) was added to the dichloromethane (20 mL) solution of compound 7f (1.38 g, 6.41 mmol, 1 eq), and the reaction solution was added and reacted at 20° C. for 1 hour. After the completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain 7 g of the crude compound as trifluoroacetate.
  • Trifluoroacetic acid (15 mL) was added to the dichloromethane (70 mL) solution of compound 14a (6.65 g, 33.04 mmol, 1 eq). After the addition, the reaction solution was reacted at 20° C. for 1 hour. After the completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain compound 14b.
  • the crude product is first subjected to preparative high performance liquid chromatography (column: Xtimate C18100*30mm* 3 ⁇ m; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile%: 2%-32%, 8 minutes) to purify the compound, and then supercritical fluid chromatography (column: DAICEL CHIRALCEL OD-H (250mm*30mm) ,5 ⁇ m); mobile phase: [0.1% ammonia/ethanol]; (0.1% ammonia/ethanol)%: 45%-45%) purified to obtain compound 14 and compound 15.
  • Triethylamine (303.22mg, 3.00mmol, 417.08 ⁇ L, 0.1eq) was added to the methanol (12mL) solution of compound 16a (3g, 29.97mmol, 2.70mL, 1eq), and the reaction solution was added and reacted at 20°C for 2 hours . After the completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain the crude compound 16b.
  • 1 H-NMR 400MHz, CDCl 3 ) ⁇ ppm 3.65 (s, 3H), 3.60-3.63 (m, 2H), 2.30-2.36 (m, 2H), 1.80-1.98 (m, 1H), 1.65-1.72 (m , 2H), 1.53-1.62 (m, 2H).
  • N,N-dimethylformamide (16mL) solution of compound 16p 120mg, 266.38 ⁇ mol, hydrochloride, 1eq
  • N,N,N',N'-tetramethyl-O-(7- Azabenzotriazol-1-yl) urea hexafluorophosphate 151.93mg, 399.56 ⁇ mol, 1.5eq
  • N,N-diisopropylethylamine 103.28 mg, 799.13 ⁇ mol, 139.19 ⁇ L, 3eq
  • reaction solution was diluted with water (30 mL), extracted with ethyl acetate (30 mL*3), washed with saturated brine (20 mL), dried with anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by preparative high performance liquid chromatography (column: Phenomenex Gemini-NX C18 75*30mm*3 ⁇ m; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile%: 0%-30%, 7 minutes) to obtain the compound 16.
  • MS m/z. 433.1 [M+H] + .
  • N-dimethylformamide (350mL) solution of compound 19e (16.28g, 46.01mmol, 1eq) was added cesium carbonate (59.97g, 184.06mmol, 4eq) and methyl iodide (19.59g, 138.04mmol, 3eq), after adding the reaction solution, react at 20°C for 1 hour.
  • N,N-dimethylformamide (50mL) solution of compound 19i (468mg, 1.04mmol, hydrochloride, 1eq) was added N,N,N',N'-tetramethyl-O-(7- Azabenzotriazol-1-yl) urea hexafluorophosphate (592.51mg, 1.56mmol, 1.5eq) and N,N-diisopropylethylamine (402.80mg, 3.12mmol, 542.85 ⁇ L, 3eq), add The reaction solution was reacted at 20°C for 2 hours.
  • Compounds 19 and 20 were purified by supercritical fluid chromatography (column: DAICEL CHIRALCEL OD-H (250mm*30mm, 5 ⁇ m); mobile phase: [0.1% ammonia-ethanol]; ethanol%: 45%-45%).
  • Experimental example 1 DNA-dependent protein kinase (DNA-PK) inhibitory activity screening experiment
  • HTRF uniform time-resolved fluorescence
  • the compound of the present invention has significant DNA-PK kinase inhibitory activity.
  • test compound is mixed with 10% N-methylpyrrolidone/90% (25% hydroxypropyl- ⁇ -cyclodextrin) water, vortexed and sonicated to prepare a 0.08mg/mL approximately clear solution, which is filtered by a microporous membrane.
  • N-methylpyrrolidone/90% (25% hydroxypropyl- ⁇ -cyclodextrin) water
  • vortexed and sonicated to prepare a 0.08mg/mL approximately clear solution, which is filtered by a microporous membrane.
  • IV intravenous injection
  • PO oral administration
  • C 0 instantaneous required concentration after intravenous injection
  • C max the highest blood concentration after administration
  • T max time required to reach peak drug concentration after administration
  • T 1/2 the time required for the blood concentration to drop by half
  • V dss the apparent volume of distribution, which refers to the constant proportionality between the amount of the drug in the body and the concentration of the blood when the drug reaches dynamic equilibrium in the body.
  • the compound of the present invention exhibits a longer half-life, lower clearance rate and higher drug exposure, and has better pharmacokinetic properties in vivo.

Abstract

一类DNA-PK抑制剂,具体为式(III)所示化合物或其药学上可接受的盐,及其在制备DNA-PK抑制剂相关药物中的应用。

Description

作为DNA-PK抑制剂的大环类化合物
本发明主张如下优先权:
CN202010248999.7,申请日2020年03月31日;
CN202010948794.X,申请日2020年09月10日;
CN202110293356.9,申请日2021年03月18日。
发明领域
本发明涉及DNA-PK抑制剂,具体涉及式(III)所示化合物或其药学上可接受的盐,及其在制备DNA-PK抑制剂相关药物中的应用。
背景技术
DNA断裂尤其是双链断裂(DSBs)是一种极为严重的损伤,会造成遗传物质的丢失、基因重组,从而导致癌症或细胞死亡。真核细胞进化出了多种机制来应对DNA双链断裂造成的严重威胁,这便是DNA损伤应答机制(DDR),主要包括DNA损伤的检测、信号传导以及损伤修复。DNA双链断裂修复主要包括同源末端连接(HR)修复和非同源末端连接(NHEJ)修复。在高等真核生物中,主要以优先地在早期G1/S期期间使用的NHEJ修复为主要机制。DDR初期损伤因子如MRN等会检测识别损伤位点,募集膦酯酰肌醇激酶家族成员(ATM、ATR、DNA-PK),磷酸化H2AX促进γH2AX形成,引导下游信号传导并募集相关蛋白完成受损DNA的修复。
DNA依赖性蛋白激酶催化亚单位(DNA-PK catalytic subunit,DNA-PKcs),属于磷酸肌醇-3-激酶相关蛋白(PI3K-related kinase,PIKK)家族,主要针对DNA双链断裂的非同源末端连接(NHEJ)修复,是DNA损伤修复的重要成员。DNA双链损伤修复时,Ku70/Ku80异源二聚体通过一个预先形成的通道特异性地连接到双链损伤处,识别双链断裂并与断裂端分别结合,然后以ATP依赖的方式沿DNA链分别向两端滑动一段距离,形成KU-DNA复合物并招募DNA-PKcs到双链断裂处与之结合,随后Ku二聚体向内移动,激活DNA-PKcs并使其自身磷酸化,最后,磷酸化的DNA-PKcs引导损伤信号传导并招募DNA末端加工相关蛋白如PNKP、XRCC4、XLF、Pol X和DNA连接酶IV等参与完成双链断裂修复。
目前,肿瘤治疗中常用的DNA损伤性化疗药物(如博来霉素,拓扑异构酶II抑制剂如依托泊苷和多柔比星)和放疗发挥作用的主要机制就是造成DNA分子的致死性的双链断裂,进而诱导肿瘤细胞的死亡。研究表明,经过放化疗治疗的肿瘤组织中均发现DNA-PK的高表达,而DNA-PKcs活性的增加在一定程度上增强了受损DNA的修复,阻止了肿瘤细胞死亡,导致了对放化疗产生耐受。此外,放化疗治疗后肿瘤组织中存活的细胞往往是对治疗不敏感的高DNA-PKcs活性细胞,这也是疗效不好和预后差的原因。通过与放化疗药物联用,DNA-PK抑制剂可以抑制DNA-PKcs活性,从而大大减少肿瘤DNA修复,诱导细胞进入凋亡程序,达到更佳的治疗效果。
ATM在同源末端链接(HR)修复中起到重要作用,当肿瘤细胞因缺陷缺乏ATM时,DNA断裂修复会更加依赖于DNA-PKcs主导的NHEJ修复以使其存活。因此,DNA-PK抑制剂同样可以作为单一药物在具有其他DNA修复途径缺陷时的肿瘤中发挥治疗效果。
本发明的DNA-PK小分子抑制剂,不仅可以作为单一药物在具有其他DNA修复途径缺陷时的肿瘤中发挥治疗效果。也可以通过与放化疗药物联用,增强肿瘤组织对放化疗的敏感性,克服耐药问题,增强对多种实体瘤和血液瘤的抑制作用。此类化合物具有良好的活性,并表现出了优异的效果和作用,具有广阔的前景。
发明内容
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2021082686-appb-000001
其中,
L 1选自-(CH 2) n-、-O(CH 2) p-、
Figure PCTCN2021082686-appb-000002
L 2选自C 1-3烷基、C 2-3烯基和C 2-3炔基;
R 1选自H、OH、F、Cl、Br、I和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
R a选自H、F、Cl、Br和I;
n选自1、2和3;
p选自1、2和3;
Y 1选自环丙基和C 1-3烷基,所述C 1-3烷基任选被1、2、3、4或5个F取代;
Y 2选自F、Cl、Br、I、环丙基和C 1-3烷基,所述C 1-3烷基任选被OH或1、2、3、4或5个F取代。
本发明提供了式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2021082686-appb-000003
其中,
L 1选自-(CH 2) n-、-O(CH 2) p-、
Figure PCTCN2021082686-appb-000004
L 2选自C 1-3烷基、C 2-3烯基和C 2-3炔基;
R 1选自H、OH、F、Cl、Br、I和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
R a选自H、F、Cl、Br和I;
n选自1、2和3;
p选自1、2和3。
本发明的一些方案中,上述L 1选自-CH 2-、-CH 2CH 2-、-OCH 2CH 2-、-OCH 2CH 2CH 2-、
Figure PCTCN2021082686-appb-000005
Figure PCTCN2021082686-appb-000006
其他变量如本发明所定义。
本发明的一些方案中,上述L 2选自--C≡C--、-CH 2CH=CH-、-CH=CH-、-CH 2CH 2CH 2-、-CH 2CH 2-和-CH 2-,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H、F和OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其化合物选自
Figure PCTCN2021082686-appb-000007
Figure PCTCN2021082686-appb-000008
其中,q选自1和2;
R 1和L 2如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其化合物选自
Figure PCTCN2021082686-appb-000009
其中,
Figure PCTCN2021082686-appb-000010
选自Z式和E式;
m选自1和2;
q选自1和2;
R 1如本发明所定义。
本发明提供了式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2021082686-appb-000011
其中,
L 1选自-(CH 2) n-、-O(CH 2) p-、
Figure PCTCN2021082686-appb-000012
L 2选自C 1-3烷基、C 2-3烯基和C 2-3炔基;
R 1选自H、OH、F、Cl、Br、I和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
R a选自H、F、Cl、Br和I;
n选自1、2和3;
p选自1、2和3。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021082686-appb-000013
其中,
L 1选自-(CH 2) n-和-O(CH 2) p-;
L 2选自-CH=CH-和-CH 2CH 2-;
R 1选自H、OH、F、Cl、Br、I和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
n选自1和2;
p选自2和3;
R a选自H、F、Cl、Br、I。
本发明还有一些方案由上述变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐。
Figure PCTCN2021082686-appb-000014
本发明的一些方案中,上述化合物或其药学上可接受的盐,其化合物选自
Figure PCTCN2021082686-appb-000015
本发明的一些方案中,上述化合物或其药学上可接受的盐在制备DNA-PK抑制剂相关药物上的应用。
本发明的一些方案中,上述DNA-PK抑制剂相关药物作为单一药物在具有其他DNA修复途径缺陷的肿瘤中发挥治疗效果。
本发明的一些方案中,上述DNA-PK抑制剂相关药物通过与放化疗药物联用,增强对实体瘤和血液瘤的抑制作用。
技术效果
本发明化合物作为一类DNA-PK抑制剂,展示了显著的DNA-PK激酶抑制活性。PK结果显示,本发明化合物的药代动力学性质优良,是很好的可开发口服给药的分子。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂 中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021082686-appb-000016
和楔形虚线键
Figure PCTCN2021082686-appb-000017
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021082686-appb-000018
和直形虚线键
Figure PCTCN2021082686-appb-000019
表示立体中心的相对构型,用波浪线
Figure PCTCN2021082686-appb-000020
表示楔形实线键
Figure PCTCN2021082686-appb-000021
或楔形虚线键
Figure PCTCN2021082686-appb-000022
或用波浪线
Figure PCTCN2021082686-appb-000023
表示直形实线键
Figure PCTCN2021082686-appb-000024
或直形虚线键
Figure PCTCN2021082686-appb-000025
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R) 0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基的键可以交叉连接到一个环上的两一个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元
Figure PCTCN2021082686-appb-000026
表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时, 这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021082686-appb-000027
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021082686-appb-000028
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021082686-appb-000029
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021082686-appb-000030
直形虚线键
Figure PCTCN2021082686-appb-000031
或波浪线
Figure PCTCN2021082686-appb-000032
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021082686-appb-000033
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021082686-appb-000034
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021082686-appb-000035
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021082686-appb-000036
Figure PCTCN2021082686-appb-000037
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021082686-appb-000038
仍包括
Figure PCTCN2021082686-appb-000039
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,“3-10元环”表示由3至10个环原子组成的环烷基、杂环烷基、环烯基或杂环烯基。所述的环包括单环,也包括螺环、并环和桥环等双环或多环体系。除非另有规定,该环任选地包含1、2或3个独立选自O、S和N的杂原子。所述3-10元环包括3-10元、3-9元、3-8元、3-7元、3-6元、3-5元、4-10元、4-9元、4-8元、4-7元、4-6元、4-5元、5-10元、5-9元、5-8元、5-7元、5-6元、6-10元、6-9 元、6-8元和6-7元环等。术语“5-7元杂环烷基”包括哌啶基等,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,“C 2-3烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至3个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-3烯基包括C 3和C 2烯基;所述C 2-3烯基可以是一价、二价或者多价。C 2-3烯基的实例包括但不限于乙烯基、丙烯基等。
除非另有规定,“C 2-3炔基”用于表示直链或支链的包含至少一个碳-碳三键的由2至3个碳原子组成的碳氢基团,碳-碳三键可以位于该基团的任何位置上。其可以是一价、二价或者多价。所述C 2-3炔基包括C 3和C 2炔基。C 2-3炔基的实例包括但不限于乙炔基、丙炔基等。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用
Figure PCTCN2021082686-appb-000040
表示,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021082686-appb-000041
扫描,收集相 关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:eq代表当量;DMSO代表二甲基亚砜,EDTA代表乙二胺四乙酸,DNA代表脱氧核糖核酸,ATP代表三磷酸腺苷;PEG代表聚乙二醇;GST代表谷胱甘肽S转移酶;Balb/c代表小鼠品系。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021082686-appb-000042
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1和2
Figure PCTCN2021082686-appb-000043
第一步
0℃下,向化合物1a(3g,35.66mmol,1eq)的二氯甲烷(30mL)溶液中加入L-脯氨酸(410.61mg,3.57mmol,0.1eq)和N-氯代丁二酰亚胺(6.19g,46.36mmol,1.3eq),加毕于20℃反应1小时,随后升温至30℃反应3小时。反应完全后,向反应液中加入石油醚(50mL),过滤,滤液减压浓缩得粗品化合物1b。
第二步
向化合物1b(4.18g,35.26mmol,2eq)的乙醇(40mL)溶液中加入化合物1c(2.7g,17.63mmol,1.0eq)和溴化氢(356.64mg,1.76mmol,239.36μL,40%水溶液0.1eq),加毕在90℃下反应12小时。反应完全后,反应液减压浓缩并经柱层析(二氯甲烷/甲醇=1:0~9:1)纯化得化合物1d。MS:m/z.218.0[M+H] +
第三步
向化合物1d(1.09g,5mmol,1eq)的乙醇(15mL)和水(15mL)混合溶液中依次加入铁粉(1.40g,25.00mmol,5eq)和氯化铵(1.34g,25.00mmol,5eq),加毕在80℃下反应1小时。反应完全后,硅藻土过滤,滤液减压浓缩并经柱层析(二氯甲烷/甲醇=1:0~9:1)纯化得化合物1e。MS:m/z 187.9[M+H] +
第四步
向双(叔丁氧羰基)胺(19g,87.45mmol,1eq)的丙酮(200mL)溶液中依次加入碳酸铯(56.99g,174.90mmol,2eq),碘化钠(655.41mg,4.37mmol,0.05eq)和化合物1f(19.55g,131.18mmol,700.81μL,1.5eq),加毕在80℃反应16小时。反应完全后,过滤,向滤液中加入水(500mL)稀释,用乙酸乙酯(250mL*2)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物1g。
第五步
向化合物1g(30g,105.12mmol,1eq)的二氧六环(20mL)溶液中加入4M盐酸/二氧六环溶液(78.84mL,3eq),加毕在30℃下反应16小时。反应完全后,反应液减压浓缩得粗品,粗品在30℃下在乙酸乙酯溶液中搅拌30分钟,过滤,滤液减压浓缩得化合物1h。
1H NMR(400MHz,CDCl 3)δ8.27(s,3H),5.70-5.80(m,1H),4.95-5.15(m,2H),2.95-3.15(m,2H),2.05-2.25(m,2H),1.85-1.95(m,2H)。
第六步
向化合物1i(1.70g,8.22mmol,1eq)的乙腈溶液(20mL)中加入碳酸钾(2.84g,20.56mmol,2.5eq)和化合物1h(1g,8.22mmol,1eq,盐酸盐),加毕在30℃下反应16小时。反应完全后,加水(50mL)稀释反应液,乙酸乙酯(50mL)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:2)纯化得化合物1j。MS:m/z 256.1[M+H] +
1H NMR(400MHz,CDCl 3)δ8.64(s,1H),8.37(s,1H),5.75-5.85(m,1H),5.00-5.10(m,2H),3.89(s,3H),3.52-3.58(m,2H),2.12-2.20(m,2H),1.65-1.80(m,2H)。
第七步
向化合物1j(1.2g,4.69mmol,1eq)的四氢呋喃(12mL)和水(3mL)混合溶液中加入一水合氢氧化锂(393.87mg,9.39mmol,2eq),加毕在30℃下反应2小时。反应完全后,减压浓缩,加水(5mL)稀释,用1M盐酸调节pH值至7左右,过滤,滤饼经减压干燥得化合物1k。MS:m/z 241.9[M+H] +
1H NMR(400MHz,CDCl 3)δ8.80(s,1H),8.37(m,1H),5.80-5.90(m,1H),5.00-5.15(m,2H),3.55-3.65(m,2H),2.15-2.23(m,2H),1.75-1.85(m,2H)。
第八步
向化合物1k(0.24g,993.07μmol,1eq))的N,N-二甲基乙酰胺(5mL)溶液中加入叠氮磷酸二苯酯(382.61mg,1.39mmol,301.27μL,1.4eq)和三乙胺(120.59mg,1.19mmol,165.87μL,1.2eq),加毕在20℃下反应1 小时,随后转至120℃下反应17小时。反应完全后,反应液加水(20mL)稀释,乙酸乙酯(20mL)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:2)得到化合物1l。MS:m/z 238.9[M+H] +
1H NMR(400MHz,CDCl 3)δ9.09(s,1H),8.13(s,1H),5.75-5.86(m,1H),4.95-5.10(m,2H),3.97(t,J=7.2Hz,2H),2.13-2.19(m,2H),1.90-2.00(m,2H)。
第九步
向化合物1l(2g,8.38mmol,1eq)的N,N-二甲基甲酰胺(40mL)溶液中加入碳酸铯(13.65g,41.90mmol,5eq)和碘甲烷(3.260g,22.97mmol,1.43mL,2.74eq),加毕在20℃反应1小时,反应完全后,反应液加水(100mL)稀释,乙酸乙酯(150mL*3)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:2)纯化得到化合物1m。MS:m/z 253.2[M+H] +
1H NMR(400MHz,CDCl 3)δ8.00(s,1H),5.75-5.85(m,1H),4.95-5.10(m,2H),3.97(t,J=7.2Hz,2H),3.45(s,3H),2.10-2.20(m,2H),1.85-1.95(m,2H)。
第十步
将化合物1m(400mg,1.58mmol,1eq),化合物1e(296.38mg,1.58mmol,1eq),碳酸铯(1.03g,3.17mmol,2eq)和甲磺酸(2-二环己基膦基-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(286.98mg,316.58μmol,0.2eq)溶于二氧六环(40mL)中并置换氮气三次,氮气保护下于100℃反应16小时,反应完全后,反应液加乙酸乙酯(50mL)稀释,过滤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:24)纯化得化合物1n。MS:m/z 404.6[M+H] +
第十一步
氮气保护下,向化合物1n(0.2g,495.69μmol,1eq)的甲苯(20mL)溶液中加入1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(72.74mg,99.14μmol,0.2eq),加毕在110℃下反应4小时,反应完全后,反应液垫硅藻土过滤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:19)纯化得粗品化合物1和化合物2。分别进行制备高效液相色谱分离纯化(柱子:Phenomenex Gemini-NX 80*30mm*3μm;流动相:[水(10mM碳酸氢铵)-乙腈];乙腈%:24%-51%,9.5分钟),(柱子:Phenomenex Gemini-NX 80*30mm*3μm;流动相:[水(10mM碳酸氢铵)-乙腈];乙腈%:26%-56%,9.5分钟)得化合物1和化合物2。
化合物1(R f=0.33,展开剂:二氯甲烷:甲醇=20:1),MS:m/z 375.9[M+H] +
1H NMR(400MHz,CDCl 3)δ8.91(s,1H),7.86(s,1H),7.44(s,1H),7.40(s,1H),6.68(s,1H),5.60-5.75(m,1H),5.42(dt,J=15.6Hz,7.6Hz,1H),3.94(t,J=8.0Hz,2H),3.69-3.71(m,2H),3.41(s,3H),2.44(s,3H),2.00-2.10(m,2H),1.70-1.80(m,2H)。
化合物2(R f=0.25,展开剂:二氯甲烷:甲醇=20:1),MS:m/z 376.1[M+H] +
1H NMR(400MHz,CDCl 3)δ9.24(s,1H),7.92(s,1H),7.44(s,1H),7.39(s,1H),6.85(s,1H),5.76-5.83(m,1H),5.42(dt,J=10Hz,6.8Hz,1H),4.06(t,J=8.0Hz,2H),3.72(d,J=6.4Hz,2H),3.44(s,3H),2.37-2.50(m,5H),2.20-2.30(m,2H)。
实施例3
Figure PCTCN2021082686-appb-000044
第一步
向化合物1(80mg,204.57μmol,1eq)的甲醇(8mL)溶液中加入二氧化铂(9.29mg,40.91μmol,0.2eq),加毕在氢气条件下于20℃下反应3小时,反应完全后,反应液用硅藻土过滤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:19)纯化得化合物3。MS:m/z 378.2[M+H] +
1H NMR(400MHz,CDCl 3)δ9.47(s,1H),7.93(s,1H),7.42(s,1H),7.32(s,1H),6.89(s,1H),3.95-4.01(m,2H),3.44(s,3H),2.90-2.95(m,2H),2.47(s,3H),2.00-2.05(m,2H),1.83-1.87(m,2H),1.40-1.80(m,4H)。
实施例4
Figure PCTCN2021082686-appb-000045
第一步
0℃下,向化合物4b(19.40g,100mmol,1eq))的二氯甲烷(250mL)溶液中依次加入化合物4a(7.51g,100.00mmol,7.71mL,1eq)和N,N-二异丙基乙基胺(12.92g,100.00mmol,17.42mL,1eq),加毕在0℃下反应2小时。反应完全后,反应液加水(200mL)稀释,二氯甲烷(100mL)萃取,饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1.5)纯化得化合物4c。MS:m/z.232.9[M+H] +
第二步
向化合物4c(8.9g,38.26mmol,1eq)的乙醇(90mL)和水(90mL)混合溶液中依次加入铁粉(10.68g,191.30mmol,5eq)和氯化铵(10.23g,191.30mmol,5eq),加毕在75℃下反应1小时。反应完全后,反应液冷却至室温,垫硅藻土过滤并用乙醇(100mL)洗涤,滤液减压浓缩得粗品,粗品用二氯甲烷(200mL)和甲醇(20mL)混合溶剂溶解,过滤,滤液减压浓缩得粗品化合物4d。
第三步
向化合物4d(6.5g,32.08mmol,1eq))的N,N-二甲基甲酰胺(70mL)溶液中依次加入咪唑(10.92g,160.38mmol,5eq)和叔丁基二甲基氯硅烷(24.17g,160.38mmol,5eq),加毕在20℃下反应2小时。反应完全后, 反应液加水(200mL)稀释,乙酸乙酯(50mL*3)萃取,合并有机相,饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物4e。MS:m/z.317.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 7.56(s,1H),5.82(s,1H),3.77-3.86(m,2H),3.57-3.66(m,2H),2.92(br s,2H),1.80-1.92(m,2H),0.90-0.92(m,9H),0.07-0.11(m,6H)。
第四步
向化合物4e(6.4g,20.20mmol,1eq)的乙腈(130mL)溶液中加入N,N'-羰基二咪唑(6.55g,40.39mmol,2eq),加毕反应液于80℃下反应2小时。反应完全后,反应液冷却至室温,减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物4f。MS:m/z.342.9[M+H] +
第五步
向化合物4f(3.78g,11.02mmol,1eq)的N,N-二甲基甲酰胺(40mL)溶液中依次加入碳酸铯(7.18g,22.05mmol,2eq)和碘甲烷(1.88g,13.23mmol,1.2eq),加毕反应液于20℃下反应1小时。反应完全后,反应液加水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物4g。
第六步
向化合物4g(3.9g,10.93mmol,1eq)的四氢呋喃(50mL)溶液中加入四丁基氟化铵(5.71g,21.85mmol,21.85mL,2eq),加毕反应液于20℃下反应1小时。反应完全后,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物4h。MS:m/z.242.8[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.04(s,1H),4.08-4.17(m,2H),3.56-3.65(m,2H),3.47(s,3H),1.92-2.04(m,2H)。
第七步
0℃下,向化合物4h(2.68g,11.04mmol,1eq)的N,N-二甲基甲酰胺(35mL)溶液中加入钠氢(530.07mg,13.25mmol,1.2eq),然后缓慢加入烯丙基溴(1.47g,12.15mmol,1.1eq),加毕反应液于20℃下反应1小时。反应完全后,反应液加水(50mL)稀释,乙酸乙酯(50mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物4i。
1H NMR(400MHz,CDCl 3)δppm 7.97(s,1H),5.74-5.88(m,1H),5.06-5.21(m,2H),4.04-4.12(m,2H),3.85-3.90(m,2H),3.48-3.53(m,2H),3.43(s,3H),2.03-2.12(m,2H)。
第八步
化合物1e(298.02mg,1.59mmol,0.9eq),化合物4i(500mg,1.77mmol,1eq),甲磺酸(2-二环己基膦基-3,6- 二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(80.16mg,88.42μmol,0.05eq)和碳酸铯(1.15g,3.54mmol,2eq)的无水二氧六环(20mL)溶液置换三次氮气,氮气保护下于100℃下反应2小时。反应完全后,经硅藻土过滤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:19)纯化得化合物4k。MS:m/z 434.0[M+H] +
1H NMR(400MHz,CDCl 3)δ8.94(s,1H),7.86(s,1H),7.43(s,1H),7.36(s,1H),6.66(s,1H),5.90-6.05(m,1H),5.79-5.89(m,1H),5.05-5.21(m,4H),4.03(t,J=6.8Hz,2H),3.85-3.95(m,2H),3.64(d,J=6.0Hz,2H),3.50-3.53(m,2H),3.40(s,3H),2.41(s,3H),2.05-2.15(m,2H)。
第九步
氮气保护下,向化合物4k(0.2g,461.36μmol,1eq))的甲苯(20mL)溶液中加入1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(101.56mg,138.41μmol,0.3eq),加毕于110℃下反应18小时。反应完全后,反应液经硅藻土过滤,滤液减压浓缩先经柱层析(甲醇/二氯甲烷=0:1~1:19)纯化,再经制备高效液相色谱(柱子:Xtimate C18 100*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:12%-32%,8分钟)纯化得化合物4。MS:m/z 406.4[M+H] +
1H NMR(400MHz,CDCl 3)δ9.52(s,1H),7.94(s,1H),7.66(s,1H),7.60(s,1H),6.96(s,1H),6.80-6.95(m,1H),6.35(dt,J=16.4Hz,6.8Hz,1H),4.15-4.30(m,2H),3.55-3.70(m,4H),3.45(s,3H),2.47-2.55(m,5H),1.85-2.25(m,2H)。
实施例5
Figure PCTCN2021082686-appb-000046
第一步
向化合物4b(3.25g,16.73mmol,1eq)和化合物5a(1.8g,16.73mmol,1eq)的四氢呋喃(50mL)溶液 中加入三乙胺(3.39g,33.46mmol,4.66mL,2eq),加毕于0℃下反应16小时,反应完全后,反应液减压浓缩,加水(50mL)稀释,用乙酸乙酯(60mL*2)萃取,饱和食盐水(50mL*5)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:4)纯化得化合物5c。
第二步
向化合物5c(1.95g,8.53mmol,1eq)的乙醇(20mL)和水(20mL)混合溶液中加入铁粉(1.91g,34.12mmol,4eq)和氯化铵(1.82g,34.12mmol,4eq),加毕在70℃下反应1小时。反应完全后,反应液减压浓缩,乙酸乙酯(60mL*2)萃取,饱和食盐水(50mL*2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1.5)纯化得化合物5d。
第三步
向化合物5d(1.24g,6.24mmol,1eq)的乙腈(30mL)溶液中加入N,N'-羰基二咪唑(2.02g,12.48mmol,2eq),加毕在80℃下反应0.5小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物5e。
第四步
向化合物5e(400mg,1.78mmol,1eq)的无水N,N-二甲基甲酰胺(10mL)溶液中加入碘甲烷(830mg,5.85mmol,364.04μL,3.28eq)和碳酸铯(1.16g,3.56mmol,2eq),加毕在30℃下反应2小时。反应完全后,反应液加水(20mL)稀释,乙酸乙酯(20mL)萃取,饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物5f。MS:m/z 238.9[M+H] +
第五步
化合物1e(291.84mg,1.56mmol,1.2eq),化合物5f(310mg,1.30mmol,1eq),甲磺酸(2-二环己基膦基-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(235.48mg,259.77μmol,0.2eq)和碳酸铯(846.38mg,2.60mmol,2eq)的无水二氧六环(10mL)和水(1mL)的混合溶液置换三次氮气,氮气保护下于100℃下反应2小时。反应完全后,经硅藻土过滤,滤液减压浓缩冰晶柱层析(甲醇/二氯甲烷=0:1~1:19)纯化得化合物5h。MS:m/z 390.1[M+H] +
1H NMR(400MHz,CDCl 3)δ8.93(s,1H),7.88(s,1H),7.45(s,1H),7.38(s,1H),6.66(s,1H),5.95-6.05(m,1H),5.70-5.85(m,1H),4.95-5.30(m,4H),4.00(t,J=7.2Hz,2H),3.64(d,J=6.0Hz,2H),3.42(s,3H),2.50-2.65(m,2H),2.43(s,3H)。
第六步
氮气保护下,向化合物5h(140mg,359.48μmol,1eq)的甲苯(140mL)溶液中加入1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(52.75mg,71.90μmol,0.2eq),加毕于110℃下反应3小时。反应完全后,反应液加水(200mL)稀释,二氯甲烷(150mL*2)萃取,合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩先经柱层析(甲醇/二氯甲烷=0:1~1:9)纯化,再经制备 高效液相色谱(柱子Welch Xtimate C18 100*40mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:0%-30%,8分钟)纯化得化合物5。MS:m/z 362.1[M+H] +
1H NMR(400MHz,CDCl 3)δ8.74(s,1H),7.89(s,1H),7.50(s,1H),7.40(s,1H),6.59(s,1H),5.78(dt,J=14.8Hz,6.8Hz,1H),5.60(dt,J=15.2Hz,6.8Hz,1H),3.85-4.00(m,2H),3.55(d,J=7.2Hz,2H),3.45(s,3H),2.47-2.50(m,2H),2.46(s,3H)。
实施例6
Figure PCTCN2021082686-appb-000047
第一步
向化合物5(70mg,193.69μmol,1eq)的甲醇(10mL)溶液中加入二氧化铂(8.80mg,38.74μmol,0.2eq),加毕在氢气条件下于25℃反应3小时。反应完全后,反应液经硅藻土过滤,滤液减压浓缩先经薄层制备色谱(甲醇/二氯甲烷=1:15)纯化,再经制备高效液相色谱(柱子Welch Xtimate C18 100*40mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-35%,8分钟)纯化得化合物6。MS:m/z 364.4[M+H] +
1H NMR(400MHz,CDCl 3)δ9.30(s,1H),7.92(s,1H),7.67(s,1H),7.40(s,1H),7.00(s,1H),3.80-4.00(m,2H),3.45(s,3H),2.80-2.95(m,2H),2.47(s,3H),1.92-2.10(m,2H),1.75-1.92(m,2H),1.52-1.70(m,2H)。
实施例7和8
Figure PCTCN2021082686-appb-000048
第一步
向化合物7a(18.92g,100mmol,1eq)的二氯甲烷(200mL)溶液中加入化合物7b(10.73g,110mmol,1.1eq),随后向反应液中缓慢加入1-丙基磷酸酐(10.73g,110mmol,1.1eq)和三乙胺(25.30g,250mmol,2.5eq),加毕反应液于20℃下反应2小时。反应完全后,反应液加水(50mL)稀释,用二氯甲烷(50mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:9)纯化得化合物7c。
1H NMR(400MHz,CDCl 3)δppm 5.22(s,1H),3.65(s,3H),3.33-3.43(m,2H),3.15(s,3H),2.56-2.66(m,2H),1.40(s,9H)。
第二步
化合物7c(5g,21.53mmol,1eq)的四氢呋喃(60mL)溶液抽换三次氮气,随后在零度下加入乙烯基溴 化镁溶液(9.89g,75.34mmol,3.5eq),加毕反应液于15℃下反应3小时。反应完全后,零度下向反应液中加入1M稀盐酸(300mL)淬灭反应,乙酸乙酯(50mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得化合物7d。
1H NMR(400MHz,CDCl 3)δppm 6.14-6.40(m,2H),5.79-5.92(m,1H),5.03(s,1H),3.29-3.49(m,2H),2.75-2.91(m,2H),1.41(s,9H)。
第三步
向化合物7d(4.6g,23.09mmol,1eq)的甲醇(70mL)溶液中加入三氯化铈(6.83g,27.7mmol,1.2eq),加毕反应液于20℃下反应0.5小时,随后反应液冷却至0℃,向反应液中加入硼氢化钠(960.78mg,25.4mmol,1.1eq),加毕反应液于20℃下再反应1.5小时。反应完全后,0℃下向反应液中加入水(30mL)稀释,乙酸乙酯(50mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~3:7)纯化得化合物7e。
1H NMR(400MHz,CDCl 3)δppm 5.79-6.00(m,1H),5.20-5.33(m,1H),5.05-5.17(m,1H),4.88(s,1H),4.13-4.24(m,1H),3.34-3.50(m,1H),3.09-3.21(m,1H),2.99-3.09(m,1H),1.56-1.75(m,2H),1.43(s,9H)。
第四步
0℃下,向化合物7e(510mg,2.53mmol,1eq)的二氯甲烷(40mL)溶液中依次加入1,8-二双甲基萘(4.34g,20.27mmol,8eq)和三甲氧基四氟硼酸嗡盐(1.5g,10.14mmol,4eq),加毕反应液于20℃下反应48小时。反应完全后,反应液加饱和柠檬酸溶液(200mL)稀释,乙酸乙酯(50mL*3)萃取,饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析纯化(乙酸乙酯/石油醚=0:1~1:4)得化合物7f。
1H NMR(400MHz,CDCl 3)δppm 5.55-5.78(m,1H),5.13-5.28(m,2H),4.84(s,1H),3.51-3.68(m,1H),3.13-3.36(m,5H),1.68-1.77(m,2H),1.43(s,9H)。
第五步
向化合物7f(1.38g,6.41mmol,1eq)的二氯甲烷(20mL)溶液中加入三氟乙酸(5mL),加毕反应液在20℃下反应1小时。反应完全后,反应液经减压浓缩得粗品化合物7g的三氟乙酸盐。
第六步
0℃下,向化合物4b(2.49g,12.82mmol,2eq)的二氧六环(25mL)溶液中依次加入化合物7g(738.26mg,6.41mmol,1eq,三氟乙酸盐)和三乙胺(5.82g,57.48mmol,8mL,8.97eq),加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物7i。MS:m/z274.7[M+H+2] +
1H NMR(400MHz,CDCl 3)δppm 9.28(s,1H),9.02(s,1H),5.68-5.78(m,1H),5.26-5.33(m,2H),3.87-3.97(m,1H),3.77-3.83(m,1H),3.58-3.67(m,1H),3.36(s,3H),1.84-1.97(m,2H)。
第七步
向化合物7i(1.2g,4.4mmol,1eq)的乙醇(12mL)和水(12mL)混合溶液中依次加入铁粉(1.23g,22mmol,5eq)和氯化铵(1.18g,22mmol,5eq),加毕反应液于75℃下反应1小时。反应完全后,反应液冷却至室温,经硅藻土过滤并用乙醇(20mL)洗涤,滤液减压浓缩得粗品,粗品用二氯甲烷(40mL)和甲醇(4mL)混合溶液溶解,过滤,滤液减压浓缩得粗品化合物7j。MS:m/z 242.9[M+H] +
第八步
向化合物7j(900mg,3.71mmol,1eq)的乙腈(20mL)溶液中加入N,N'-羰基二咪唑(1.2g,7.42mmol,2eq),加毕反应液于80℃下反应2小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯/石油醚=0:1~1:1)纯化得化合物7k。
1H NMR(400MHz,CDCl 3)δppm 9.24(s,1H),8.13(s,1H),5.60-5.77(m,1H),5.13-5.36(m,2H),4.03-4.18(m,2H),3.57-3.76(m,1H),3.23(s,3H),1.95-2.11(m,2H)。
第九步
向化合物7k(478mg,1.77mmol,1eq)的N,N-二甲基甲酰胺(10mL)溶液中依次加入碳酸铯(1.15g,3.54mmol,2eq)和碘甲烷(301.10mg,2.12mmol,1.2eq),加毕反应液于20℃下反应1小时。反应完全后,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物7l。
第十步
将化合物7l(210mg,742.77μmol,1eq),化合物1e(139.08mg,742.77μmol,1eq),甲磺酸(2-二环己基膦基-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(134.66mg,148.55μmol,0.2eq)和碳酸铯(484.02mg,1.49mmol,2eq)置于反应瓶并置换三次氮气,随后向混合物中加入无水二氧六环(10mL),加毕反应液于100℃下反应3小时。反应完全后,经硅藻土过滤,并用乙酸乙酯(20mL)洗涤,滤液减压浓缩并经柱层析(甲醇/二氯甲烷=0:1~1:9)纯化得化合物7n。MS:m/z 434.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.92(s,1H),7.86(s,1H),7.43(s,1H),7.36(s,1H),6.66(s,1H),5.93-6.06(m,1H),5.60-5.73(m,1H),5.13-5.27(m,4H),3.97-4.06(m,2H),3.74-3.79(m,2H),3.57-3.62(m,1H),3.41(s,3H),3.21(s,3H),2.41(s,3H),1.94-2.03(m,2H)。
第十一步
向化合物7n(160mg,742.77μmol,1eq)的无水甲苯(20mL)溶液中加入1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(54.16mg,73.82μmol,0.2eq),置换三次氮气,氮气保护下,在110℃下反应2小时。反应完全后,经硅藻土过滤并用乙酸乙酯(20mL)洗涤,滤液减压浓缩得粗品,先经制备高效液相色谱(柱子:Welch Xtimate C18 100*40mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:0%-30%,8分钟)纯化得7o,再经超临界流体色谱(柱子:DAICEL CHIRALPAKAD (250mm*30mm,10μm);流动相:[0.1%氨水-乙醇];乙醇%:40%-40%)纯化得化合物7和8。
化合物7,保留时间0.746分,MS:m/z 406.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.91(s,1H),7.87(s,1H),7.39-7.47(m,2H),6.70(s,1H),5.89(d t,J=16.0Hz,4.4Hz,1H),5.32-5.40(m,1H),3.90-4.07(m,2H),3.76-3.80(m,2H),3.67-3.74(m,1H),3.42(s,3H),3.27(s,3H),2.45(s,3H),1.95-2.04(m,2H)。
化合物8,保留时间0.973分,MS:m/z 406.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.91(s,1H),7.87(s,1H),7.39-7.47(m,2H),6.70(s,1H),5.89(d t,J=16.0,4.4Hz,1H),5.31-5.40(m,1H),3.91-4.06(m,2H),3.75-3.81(m,2H),3.66-3.74(m,1H),3.42(s,3H),3.27(s,3H),2.45(s,3H),1.94-2.05(m,2H)。
实施例9和10
Figure PCTCN2021082686-appb-000049
第一步
氮气下,向化合物7o(50mg,123.32μmol,1eq)的甲醇溶液中加入二氧化铂(5.6mg,24.66μmol,0.2eq),加毕在氢气条件下于20℃反应1小时。反应完全后,经硅藻土过滤,并用乙酸乙酯(30mL)洗涤,滤液减压浓缩得粗品9a,经超临界流体色谱(柱子:DAICEL CHIRALCEL ODH(250mm*30mm,5μm);流动相:[0.1%氨水-乙醇];乙醇%:45%-45%)纯化得化合物9和10。
化合物9,保留时间4.928分,MS:m/z 408.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.46(s,1H),7.93(s,1H),7.44(s,1H),7.32(s,1H),6.91(s,1H),3.98-4.16(m,2H),3.53-3.61(m,1H),3.45(s,3H),3.41(s,3H),2.94-3.04(m,2H),2.47(s,3H),2.25-2.35(m,1H),2.06-2.13(m,1H),1.85-1.96(m,4H)。
化合物10,保留时间5.530分,MS:m/z 408.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.45(s,1H),7.93(s,1H),7.41(s,1H),7.32(s,1H),6.90(s,1H),3.96-4.15(m,2H),3.52-3.61(m,1H),3.45(s,3H),3.38-3.42(m,3H),2.98(t,J=7.8Hz,2H),2.46(s,3H),2.24-2.35(m,1H),2.03-2.14(m,1H),1.79-1.95(m,4H)。
实施例11和12
Figure PCTCN2021082686-appb-000050
第一步
-60℃下,向化合物4b(10g,51.55mmol,1eq)的二氯甲烷(300mL)溶液中加入化合物11a(9.04g,51.55mmol,1eq)和N,N-二异丙基乙胺(6.66g,51.55mmol,1eq),加毕于30℃下反应2小时。反应完全后,反应液加二氯甲烷(200mL)稀释,用水(200mL*2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物11c。
1H NMR(400MHz,CDCl 3)δppm 9.05(s,1H),8.75(s,1H),3.84(t,J=5.2Hz,2H),3.79(t,J=5.2Hz,2H),0.92(s,9H),0.09(s,6H)。
第二步
60℃下,向化合物11c(18.0g,54.68mmol,1eq)和铁粉(15.10g,270.39mmol,5eq)的乙醇(200mL)溶液中加入氯化铵(14.46g,270.39mmol,5eq)的水(10mL)溶液。加毕在60℃下反应1小时。反应完全后,反应液冷却至室温,加乙醇(300mL)稀释,过滤,滤液减压浓缩。浓缩物用乙醇(100mL)溶解,搅拌,过滤,所得固体经减压干燥得化合物11d。
1H NMR(400MHz,CDCl 3)δppm 7.60(s,1H),5.51(br s,2H),3.80(t,J=5.2Hz,2H),3.61(t,J=5.2Hz,2H),0.90(s,9H),0.06(s,6H)。
第三步
向化合物11d(17g,56.13mmol,1eq)的乙腈(200mL)溶液中加入N,N’-羰基二咪唑(10.92g,667.35mmol, 1.2eq),加毕在80℃下反应1小时。反应完全后,反应液冷却至室温,加水(500mL)稀释,过滤,所得固体干燥后,经柱层析(乙酸乙酯:石油醚=1:4)纯化得化合物11e。
1H NMR(400MHz,DMSO-d 6)δppm 11.77(br s,1H),8.27(s,1H),3.90-4.10(m,4H),0.82(s,9H),0.00(s,6H)。
第四步
向化合物11e(16.3g,49.56mmol,1eq)的N,N-二甲基甲酰胺(100mL)溶液中加入碳酸铯(24.22g,74.35mmol,1.5eq)和碘甲烷(8.85g,62.35mmol,1.26eq),加毕在25℃下反应1.5小时。反应完全后,反应液加水(300mL)稀释,过滤,所得固体用水(200mL)洗涤,干燥后得化合物11f。
1H NMR(400MHz,DMSO-d 6)δppm 7.99(s,1H),4.10(t,J=5.6Hz,2H),3.94(t,J=5.6Hz,2H),3.45(s,3H),0.77(s,9H),0.06(s,6H)。
第五步
向化合物11f(3.1g,9.04mmol,1eq)的四氢呋喃(40mL)溶液中加入四丁基氟化铵(4.73g,18.08mmol,18.08mL,2eq),加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物11g。MS:m/z.228.9[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.03(s,1H),4.13-4.24(m,2H),3.95-4.03(m,2H),3.47(s,3H),2.68-2.81(m,1H)。
第六步
0℃下,向化合物11g(1.74g,7.61mmol,1eq)的N,N-二甲基甲酰胺(35mL)溶液中加入钠氢(365.26mg,9.13mmol,1.2eq,60%纯度),然后缓慢加入化合物烯丙基溴(1.01g,8.37mmol,1.1eq),加毕反应液于20℃下反应1小时。反应完全后,反应液加水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物11h。
1H NMR(400MHz,CDCl 3)δppm 7.99(s,1H),5.75-5.86(m,1H),5.10-5.25(m,2H),4.13-4.18(m,2H),3.98-4.02(m,2H),3.77-3.82(m,2H),3.45(s,3H)。
第七步
将化合物11h(100mg,372.16μmol,1eq),化合物1e(67.72mg,334.95μmol,0.9eq),甲磺酸(2-二环己基膦基-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(20.24mg,22.33μmol,0.06eq)和碳酸铯(242.52mg,744.33mmol,2eq)置于反应瓶并置换三次氮气,随后向混合物中加入无水二氧六环(4mL),加毕反应液在氮气保护下于100℃反应1小时。反应完全后,经硅藻土过滤,并用乙酸乙酯(30mL)洗涤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物11j。
1H NMR(400MHz,CDCl 3)δppm 8.94(s,1H),7.88(s,1H),7.45(s,1H),7.37(s,1H),6.64(s,1H),5.95-6.07(m,1H),5.77-5.88(m,1H),5.09-5.23(m,4H),4.09-4.15(m,2H),3.98-4.02(m,2H),3.78-3.82(m,2H),3.62-3.66(m,2H),3.42(s,3H),2.41(s,3H)。
第八步
将化合物11j(580mg,1.38mmol,1eq),化合物1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(202.91mg,276.53μmol,0.2eq)置于反应瓶并置换三次氮气,随后向混合物中加入1,2-二氯乙烷(18mL),加毕于80℃下反应2小时。反应完全后,经硅藻土过滤,用乙酸乙酯(100mL)洗涤滤饼,滤液减压浓缩得粗品,经制备高效液相色谱(柱子:Welch Xtimate C18100*40mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-35%,8分钟)纯化得化合物11和12。
化合物11,保留时间:0.599分(柱子:Agilent Pursult 5C18 20*2.0mm,流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-95%,1.5分钟);MS:m/z.391.9[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.29-8.30(m,1H),7.86(s,1H),7.60(s,1H),7.45(s,1H),6.63(s,1H),5.83(dt,J=15.6Hz,5.2Hz,1H),5.40-5.59(m,1H),3.97-4.06(m,4H),3.63-3.72(m,4H),3.41(s,3H),2.43(s,3H)。化合物12,保留时间:0.656分(柱子:Agilent Pursult 5C18 20*2.0mm,流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-95%,1.5分钟);MS:m/z.391.9[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.14(s,1H),7.92(s,1H),7.60(s,1H),7.42(s,1H),6.76(s,1H),5.65-5.80(m,1H),5.46(dt,J=10.8Hz,4.4Hz,1H),4.15-4.21(m,2H),4.08-4.14(m,2H),3.90-3.97(m,2H),3.81-3.82(m,2H),3.45(s,3H),2.46(s,3H)。
实施例13
Figure PCTCN2021082686-appb-000051
第一步
氮气保护下,向化合物11(40mg,102.19μmol,1eq)的无水甲醇(6mL)溶液中加入二氧化铂(200mg,880.76μmol,8.62eq),加毕置换三次氢气,氢气条件下于20℃下反应3小时。反应完全后,经硅藻土过滤,并用甲醇(30mL)洗涤,滤液减压浓缩并经薄层制备色谱(甲醇:二氯甲烷=1:10)纯化得化合物13。MS:m/z394.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.32(s,1H),7.94(s,1H),7.73(s,1H),7.38(s,1H),6.84(s,1H),4.07-4.20(m,2H),3.73-3.85(m,2H),3.60-3.66(m,2H),3.45(s,3H),2.98-3.07(m,2H),2.48(s,3H),1.78-1.84(m,2H),1.69-1.74(m,2H)。
实施例14和15
Figure PCTCN2021082686-appb-000052
第一步
向化合物14a(6.65g,33.04mmol,1eq)的二氯甲烷(70mL)溶液中加入三氟乙酸(15mL),加毕,反应液在20℃下反应1小时。反应完全后,反应液经减压浓缩得化合物14b。
第二步
0℃下,向化合物4b(12.80g,66.00mmol,2eq)的二氧六环(130mL)溶液中依次加入化合物14b(3.34g,33mmol,1eq,三氟乙酸盐)和三乙胺(11.63g,114.95mmol,16mL,3.48eq),加毕,反应液于20℃下反应1小时。反应完全后,反应液加水(60mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物14d。MS:m/z 259.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.98-9.09(s,2H),5.88-6.02(m,1H),5.27-5.37(m,1H),5.16-5.23(m,1H),4.32-4.41(m,1H),3.88-3.99(m,1H),3.65-3.77(m,1H),2.04-2.09(m,1H),1.94-2.04(m,1H),1.80-1.90(m,1H)。
第三步
向化合物14d(4g,15.46mmol,1eq)的乙醇(40mL)和水(40mL)混合溶液中依次加入铁粉(4.32g,77.32mmol,5eq)和氯化铵(4.14g,77.32mmol,5eq),加毕,反应液于75℃下反应1小时。反应完全后,反应液冷却至室温,经硅藻土过滤并用乙醇(100mL)洗涤,滤液减压浓缩得粗品;粗品用二氯甲烷(100mL)和甲醇(10mL)溶解,过滤,滤液减压浓缩得化合物14e。MS:m/z 229.0[M+H] +
第四步
向化合物14e(3.68g,16.09mmol,1eq)的四氢呋喃(50mL)溶液中依次加入咪唑(5.48g,80.46mmol,5eq)和叔丁基二甲基氯硅烷(12.13g,80.46mmol,5eq),加毕,反应液在20℃下反应1小时。反应完全后,反应液加水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~3:7)纯化得化合物14f。
第五步
向化合物14f(2.78mg,8.11mmol,1eq)的乙腈(60mL)溶液中加入N,N’-羰基二咪唑(2.63g,16.21mmol,2eq),加毕,反应液于80℃下反应1小时。反应完全后,反应液加水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物14g。MS:m/z 369.3[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.37(s,1H),8.12(s,1H),5.76-5.93(m,1H),5.18-5.34(m,1H),5.04-5.15(m,1H),4.25-4.37(m,1H),3.98-4.10(m,2H),1.98-2.09(m,2H),0.91(s,9H),0.02-0.09(m,6H)。
第六步
向化合物14g(2.75g,7.45mmol,1eq)的N,N-二甲基甲酰胺(40mL)溶液中依次加入碳酸铯(4.86g,14.91mmol,2eq)和碘甲烷(1.268g,8.94mmol,1.2eq),加毕,反应液于20℃下反应1小时。反应完全后,反应液加水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物14h。
第七步
将化合物14h(1.5g,3.9mmol,1eq),化合物1e(660.06mg,3.53mmol,0.9eq),甲磺酸(2-二环己基膦基-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2-氨基-1,1'-联苯-2-基)钯(II)(710.13mg,783.37μmol,0.2eq)和碳酸铯(2.55g,7.83mmol,2eq)置于反应瓶并置换三次氮气,随后向混合物中加入无水二氧六环(30mL),加毕氮气保护下在100℃反应3小时。反应完全后,反应液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物14j。MS:m/z 534.3[M+H] +
第八步
向化合物14j(965mg,1.18mmol,1eq)的四氢呋喃(10mL)溶液中加入四丁基氟化铵(945.45mg,3.62mmol,3.62mL,2eq),加毕,反应液于20℃下反应1小时。反应完全后,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物14k。MS:m/z.420.0[M+H] +
第九步
-78℃下,向化合物14k(795mg,1.9mmol,1eq)的二氯甲烷(12mL)溶液中加入二乙胺基三氟化硫(458.23mg,2.84mmol,1.5eq),加毕,反应液于20℃下反应2小时。反应完全后,反应液加饱和碳酸氢钠溶液(20mL)稀释,乙酸乙酯(20mL*3)萃取,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物14l。MS:m/z 422.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.90(s,1H),7.88(s,1H),7.45(s,1H),7.38(s,1H),6.58-6.65(m,1H),5.81-6.07(m,2H),5.30-5.40(m,1H),5.16-5.26(m,3H),4.91-5.12(m,1H),4.02-4.11(m,2H),3.60-3.68(m,2H),3.42(s,3H),2.42(s,3H),2.19-2.26(m,2H)。
第十步
将化合物14l(208mg,493.51μmol,1eq),化合物1,3-双(2,4,6-三甲基苯基)-4,5-二氢咪唑-2-基[2-(异丙氧-5-(N,N-二甲胺磺酰)苯基]甲基二氯化钌(72.42mg,98.70μmol,0.2eq)置于反应瓶并置换三次氮气,随后向混合物中加入1,2-二氯乙烷(25mL),加毕,氮气保护下在80℃反应3小时。反应完全后,反应液减压浓缩得粗品,粗品先经制备高效液相色谱(柱子:Xtimate C18100*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:2%-32%,8分钟)纯化得化合物,再经超临界流体色谱(柱子:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%氨/乙醇];(0.1%氨/乙醇)%:45%-45%)纯化得化合物14和化合物15。化合物14,保留时间6.746分钟,MS:m/z 394.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.86(s,1H),7.89(s,1H),7.38-7.53(m,2H),6.72(s,1H),6.02(d t,J=16.0Hz,5.6Hz,1H),5.41-5.56(m,1H),4.92-5.16(m,1H),4.06-4.18(m,1H),3.93-4.04(m,1H),3.74-3.82(m,2H),3.42(s,3H),2.45(s,3H),2.19-2.29(m,1H),2.02-2.10(m,1H)。
化合物15,保留时间7.061分钟,MS:m/z 394.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.87(s,1H),7.89(s,1H),7.39-7.51(m,2H),6.73(s,1H),6.02(d t,J=16.0Hz,5.6Hz,1H),5.42-5.60(m,1H),4.93-5.14(m,1H),4.06-4.16(m,1H)3.93-4.03(m,1H),3.75-3.83(m,2H),3.43(s,3H),2.45(s,3H),2.19-2.33(m,1H),2.01-2.15(m,1H)。
实施例16
Figure PCTCN2021082686-appb-000053
第一步
向化合物16a(3g,29.97mmol,2.70mL,1eq)的甲醇(12mL)溶液中加入三乙胺(303.22mg,3.00mmol,417.08μL,0.1eq),加毕反应液于20℃下反应2小时。反应完全后,反应液减压浓缩得粗品化合物16b。 1H-NMR(400MHz,CDCl 3)δppm 3.65(s,3H),3.60-3.63(m,2H),2.30-2.36(m,2H),1.80-1.98(m,1H),1.65-1.72(m,2H),1.53-1.62(m,2H)。
第二步
向化合物16b(3.95g,29.89mmol,1eq)的二氯甲烷(80mL)溶液中加入氯铬酸吡啶盐(9.66g,44.83mmol,1.5eq),加毕反应液于20℃下反应6小时。反应完全后,反应液过滤,滤液减压浓缩得粗品化合物16c。
1H-NMR(400MHz,CDCl 3)δppm 9.77(s,1H),3.67(s,3H),2.49-2.55(m,2H),2.36-2.39(m,2H),1.92-1.97(m,2H)。
第三步
0℃下,向化合物16c(3.09g,23.74mmol,1eq)的二氯甲烷(50mL)溶液中加入N-氯代丁二酰亚胺(3.80g,28.49mmol,1.2eq)和L-脯氨酸(273.36mg,2.37mmol,0.1eq),加毕反应液于20℃下反应3小时。反应完全后,反应液加入石油醚(20mL)稀释,过滤,滤液减压浓缩得粗品化合物16d。
1H-NMR(400MHz,CDCl 3)δppm 9.53(s,1H),4.30-4.38(m,1H),3.69(s,3H),2.54-2.59(m,2H),2.36-2.41(m,2H)。
第四步
向化合物16d(2.7g,16.40mmol,1eq)的乙醇(25mL)和水(5mL)溶液中加入化合物1c(3.01g,19.69mmol,1.2eq),加毕反应液于100℃下反应16小时。反应完全后,反应液加入饱和碳酸氢钠溶液(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,残留物经柱层析(乙酸乙酯:石油醚=0:1~1:0)纯化得化合物16f。MS:m/z.263.9[M+H] +
第五步
向化合物16f(500mg,1.90mmol,1eq)的乙醇(5mL)和水(5mL)溶液中加入铁粉(530.34mg,9.50mmol,5eq)和氯化铵(507.99mg,9.50mmol,5eq),加毕反应液于75℃下反应1小时。反应完全后,反应液用硅藻土过滤并用乙醇(20mL)洗涤,洗涤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物16g。MS:m/z.234.0[M+H] +
第六步
0℃下,向化合物4b(8g,41.24mmol,1eq)的二氧六环(100mL)溶液中依次加入化合物16i(8.67g,43.30mmol,1.05eq)和三乙胺(10.43g,103.11mmol,14.35mL,2.5eq),加毕反应液于20℃下反应2小时。反应完全后,反应液减压浓缩,残留物经柱层析(乙酸乙酯:石油醚=0:1~3:7)纯化得化合物16j。MS:m/z 358.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.06(s,1H),8.31(s,1H),4.32-4.44(m,1H),4.08-4.16(m,2H),2.94-3.03(m,2H),2.04-2.09(m,2H),1.55-1.60(m,2H),1.48(s,9H)。
第七步
向化合物16j(11.29g,31.55mmol,1eq)的乙醇(120mL)和水(120mL)混合溶液中依次加入铁粉(8.81g,157.77mmol,5eq)和氯化铵(8.44g,157.77mmol,5eq),加毕反应液于75℃下反应1小时。反应完全后,反应液冷却至室温,硅藻土过滤,滤液减压浓缩得粗品。粗品在25℃下用二氯甲烷:甲醇=20mL/2mL超声5分钟,过滤,滤液减压浓缩得化合物16k。MS:m/z 328.1[M+H] +
第八步
向化合物16k(5.84g,17.82mmol,1eq)的乙腈(60mL)溶液中加入N,N'-羰基二咪唑(5.78g,35.63mmol,2eq),加毕反应液于80℃下反应1小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物16l。MS:m/z 354.0[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.99(s,1H),8.18(s,1H),4.43-4.57(m,1H),4.21-4.37(m,2H),2.78-2.89(m,2H),2.49-2.64(m,2H),1.73-1.82(m,2H),1.50(s,9H)。
第九步
向化合物16l(5.6g,15.83mmol,1eq)的N,N-二甲基甲酰胺(60mL)溶液中依次加入碳酸铯(10.31g,31.66mmol,2eq)和碘甲烷(2.7g,18.99mmol,1.18mL,1.2eq),加毕反应液于20℃下反应1小时。反应完全后,加入水(100mL)淬灭,乙酸乙酯(100mL*3)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品化合物16m。
第十步
化合物16m(180mg,489.36μmol,1eq),化合物16g(102.74mg,440.42μmol,0.9eq),甲烷磺酸(2-二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2'-氨基-1,1'-联苯-2-基)钯(II)(88.72mg,97.87μmol,0.2eq)和碳酸铯(318.88mg,978.71μmol,2eq)的无水二氧六环(5mL)溶液置换三次氮气,随后在100℃下反应3小时。反应完全后,反应液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物16n。MS:m/z.565.2[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 8.90(s,1H),7.90(s,1H),7.44(s,1H),7.33(s,1H),6.57(s,1H),4.40-4.50(m,1H),4.23-4.38(m,2H),3.70(s,3H),3.40(s,3H),3.12-3.23(m,2H),2.76-2.90(m,4H),2.50-2.65(m,2H),2.42(s,3H),1.73-1.81(m,2H),1.48(s,9H)。
第十一步
向化合物16n(155mg,274.51μmol,1eq)的四氢呋喃(4mL)和水(1mL)溶液中加入一水合氢氧化锂(23.04mg,549.03μmol,2eq),加毕反应液于20℃下反应2小时。反应完全后,反应液减压浓缩得粗品化合物16o。
第十二步
向化合物16o(150mg,272.43μmol,1eq)中加入氯化氢/二氧六环(4mol/L)溶液(2mL),加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩得粗品化合物16p的盐酸盐。
第十三步
向化合物16p(120mg,266.38μmol,盐酸盐,1eq)的N,N-二甲基甲酰胺(16mL)溶液中加入N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(151.93mg,399.56μmol,1.5eq)和N,N-二异丙基乙胺(103.28 mg,799.13μmol,139.19μL,3eq),加毕反应液于20℃下反应2小时。反应完全后,反应液加入水(30mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得粗品。粗品经制备高效液相色谱(柱子:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:0%-30%,7分钟)纯化得化合物16。MS:m/z.433.1[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 8.75(s,1H),7.93(s,1H),7.57-7.61(m,2H),6.77(s,1H),4.59-4.71(m,2H),4.03-4.12(m,1H),3.44(s,3H),3.27-3.38(m,2H),3.07-3.19(m,2H),2.93-3.03(m,1H),2.70-2.81(m,1H),2.55-2.64(m,1H),2.45-2.52(m,4H),2.05-2.15(m,1H),1.85-2.04(m,1H)。
实施例17
Figure PCTCN2021082686-appb-000054
第一步
向化合物16m(4.58g,12.45mmol,1eq)中加入氯化氢/二氧六环(4mol/L,3.11mL,1eq),加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩得粗品化合物17a的盐酸盐。
第二步
向化合物17a(100mg,328.76μmol,1eq,盐酸盐)的N,N-二甲基甲酰胺(5mL)溶液中依次加入化合物17b(39.11mg,263.01μmol,12.33μL,80%纯度,0.8eq),碘化钾(5.46mg,32.88μmol,0.1eq)和碳酸钾(136.31mg,986.27μmol,3eq),加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:3)纯化得化合物17c。MS:m/z 305.9[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 7.99(s,1H),4.30-4.41(m,1H),3.43(s,3H),3.37-3.41(m,2H),2.99-3.06(m,2H),2.67-2.80(m,2H),2.38-2.47(m,2H),2.26-2.30(m,1H),1.75-1.83(m,2H)。
第三步
向化合物17c(375mg,1.23mmol,1.2eq)的N,N-二甲基甲酰胺(10mL)溶液中依次加入化合物17d(309.73mg,1.02mmol,1eq),碘化亚铜(58.39mg,306.61μmol,0.3eq),N,N-二异丙基乙胺(198.14mg,1.53mmol,267.03μL,1.5eq)和四(三苯基膦)钯(59.05mg,51.10μmol,0.05eq)并置换三次氮气,在80℃下反应1小时。反应完全后,反应液冷却至室温,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物17e。MS:m/z 481.1[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.22(s,1H),7.98-8.07(m,3H),4.32-4.45(m,1H),3.39-3.46(m,5H),3.11-3.21(m,2H),2.70-2.77(m,5H),2.49-2.56(m,2H),1.80-1.85(m,2H)。
第四步
向化合物17e(485mg,1.01mmol,1eq)的乙醇(10mL)和水(10mL)混合溶液中依次加入铁粉(281.60mg,5.04mmol,5eq)和氯化铵(269.73mg,5.04mmol,5eq),加毕反应液于75℃下反应1小时。反应完全后,反应液冷却至室温,硅藻土过滤并用乙醇(20mL)洗涤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物17f。
第五步
将化合物17f(68mg,150.80μmol,1eq),三(二亚苄基丙酮)二钯(13.81mg,15.08μmol,0.1eq),4,5-双二苯基膦-9,9-二甲基氧杂蒽(17.45mg,30.16μmol,0.2eq)和碳酸铯(98.27mg,301.60μmol,2eq)置于反应瓶并置换三次氮气,随后向混合物中加入无水二氧六环(15mL)并在100℃下反应2小时。反应完全后,反应液减压浓缩,经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物17。MS:m/z 415.1[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.79(s,1H),7.96(s,1H),7.68(s,1H),7.45(s,1H),7.01(s,1H),4.45-4.56(m,1H),4.02-4.08(m,2H),3.74-3.75(m,2H),3.45(s,3H),3.27-3.35(m,4H),2.81-2.94(m,2H),2.49(s,3H)。
实施例18
Figure PCTCN2021082686-appb-000055
将化合物17(35mg,84.45μmol,1eq),二氧化铂(1.92mg,8.44μmol,0.1eq)置于反应瓶并置换三次氢气,随后向混合物中加入无水甲醇(3mL)并在氢气(一个大气压)下反应0.5小时。反应完全后,硅藻土过滤,并用甲醇(20mL)洗涤,洗涤液减压浓缩得粗品,粗品经薄层制备色谱(甲醇:二氯甲烷=0:1~1:10)纯化得化合物18。MS:m/z 419.1[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 8.83(s,1H),7.89(s,1H),7.36-7.42(m,2H),6.61(s,1H),4.35-4.48(m,1H), 3.41(s,3H),2.96-3.04(m,2H),2.75-2.86(m,4H),2.46-2.53(m,2H),2.42(s,3H),2.27-2.34(m,2H),1.88-1.98(m,2H),1.65-1.75(m,2H)。
实施例19和20
Figure PCTCN2021082686-appb-000056
第一步
0℃下,向化合物4b(11.62g,59.92mmol,1.2eq)的二氧六环(300mL)溶液中依次加入化合物19b(10g,49.93mmol,1eq)的二氧六环(100mL)溶液和三乙胺(7.58g,74.90mmol,1.5eq,10.42mL),加毕反应液于20℃下反应1小时。反应完全后,反应液过滤,滤液减压浓缩,残留物经柱层析(乙酸乙酯:石油醚=0:1~1:9)纯化得化合物19c。MS:m/z 358.1[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.08(s,1H),8.53(br s,1H),4.26-4.56(m,1H),3.24-3.75(m,4H),1.83-2.03(m,2H),1.64-1.79(m,2H),1.47(s,9H)。
第二步
向化合物19c(15.78g,44.10mmol,1eq)的乙醇(120mL)和水(40mL)混合溶液中依次加入铁粉(12.32g,220.52mmol,5eq)和氯化铵(11.80g,220.52mmol,5eq),加毕反应液于75℃下反应1小时。反应完全后,反应液冷却至室温,硅藻土过滤,滤液减压浓缩得粗品,粗品在25℃下后用二氯甲烷:甲醇=40mL/4mL超声5分钟,过滤,滤液减压浓缩得化合物19d。MS:m/z 328.0[M+H] +
第三步
向化合物19d(15.43g,47.07mmol,1eq)的乙腈(300mL)溶液中加入N,N'-羰基二咪唑(22.90g,141.21mmol,3eq),加毕反应液于80℃下反应1小时。反应完全后,反应液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物19e。MS:m/z 354.0[M+H] +
第四步
向化合物19e(16.28g,46.01mmol,1eq)的N,N-二甲基甲酰胺(350mL)溶液中依次加入碳酸铯(59.97g,184.06mmol,4eq)和碘甲烷(19.59g,138.04mmol,3eq),加毕反应液于20℃下反应1小时。反应完全后,加入水(10mL)淬灭,减压浓缩,随后用水(150mL)稀释,乙酸乙酯(200mL*2)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物19f。MS:m/z 367.9[M+H] +
第五步
将化合物16g(140.00mg,600.17μmol,1eq),化合物19f(220.76mg,600.17μmol,1eq),甲烷磺酸(2-二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2'-氨基-1,1'-联苯-2-基)钯(II)(108.81mg,120.03μmol,0.2eq)和碳酸铯(391.10mg,1.20mmol,2eq)置于反应瓶并抽换三次氮气,随后向混合物中加入无水二氧六环(4mL)并在100℃下反应3小时。反应完全后,反应液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物19g。MS:m/z.565.3[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 8.84(s,1H),7.90(s,1H),7.47(s,1H),7.35(s,1H),6.58(s,1H),4.30-4.45(m,1H),4.09-4.19(m,2H),3.71(s,3H),3.59-3.65(m,1H),3.40(s,3H),3.10-3.22(m,2H),2.79-2.84(m,2H),2.66-2.73(m,1H),2.49-2.50(m,1H),2.40-2.42(m,3H),1.89-1.99(m,2H),1.83-1.87(m,1H),1.45(s,9H)。
第六步
向化合物19g(360mg,637.58μmol,1eq)的四氢呋喃(4mL)和水(1mL)溶液中加入一水合氢氧化锂(53.51mg,1.28mmol,2eq),加毕反应液于20℃下反应3小时。反应完全后,反应液减压浓缩得化合物19h。
第七步
向化合物19h(350mg,635.66μmol,1eq)中加入氯化氢/二氧六环(4mol/L,4mL)溶液,加毕反应液于20℃下反应1小时。反应完全后,反应液减压浓缩得化合物19i的盐酸盐。
第八步
向化合物19i(468mg,1.04mmol,盐酸盐,1eq)的N,N-二甲基甲酰胺(50mL)溶液中加入N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(592.51mg,1.56mmol,1.5eq)和N,N-二异丙基乙胺(402.80mg,3.12mmol,542.85μL,3eq),加毕反应液于20℃下反应2小时。反应完全后,反应液加入水(20mL)稀释,乙酸乙酯(30mL*3)萃取,饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得消旋化合物。经超临界流体色谱(柱子:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%氨水-乙醇];乙醇%:45%-45%)纯化得化合物19和20。
化合物19,保留时间5.392分钟,MS:m/z 433.2[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.48(s,1H),7.97(s,1H),7.51-7.59(m,1H),7.41-7.49(m,1H),6.99(s,1H),4.76-4.84(m,1H),4.41-4.52(m,1H),4.22-4.31(m,1H),3.65-3.78(m,1H),3.30-3.48(m,7H),2.92-3.05(m,1H),2.62-2.73(m,1H),2.50(s,3H),2.16-2.26(m,3H)。
化合物20,保留时间5.646分钟,MS:m/z 433.3[M+H] +
1H-NMR(400MHz,CDCl 3)δppm 9.51(s,1H),7.98(s,1H),7.59-7.69(m,1H),7.42-7.50(m,1H),7.00(s,1H),4.72-4.82(m,1H),4.40-4.53(m,1H),4.20-4.31(m,1H),3.64-3.78(m,1H),3.33-3.49(m,7H),2.90-3.11(m,1H),2.64-2.73(m,1H),2.51(s,3H),2.14-2.25(m,3H)。
实施例21和22
Figure PCTCN2021082686-appb-000057
第一步
向化合物19f(9.35g,25.42mmol,1eq)中加入氯化氢/甲醇(30mL)溶液,加毕于20℃下反应1小时。反应完全后,反应液减压浓缩得粗品化合物21a的盐酸盐。MS:m/z 268.0[M+H] +
第二步
向化合物21a(2.82g,9.27mmol,1eq,盐酸盐)的四氢呋喃(100mL)溶液中依次加入化合物17b2.07g,13.91mmol,1.5eq,80%纯度,1.50mL),碘化钾(153.90mg,927.10μmol,0.1eq)和碳酸钾(3.84g,27.81mmol,3eq),加毕反应液于20℃下反应40小时。反应完全后,用水(50mL)稀释,乙酸乙酯(100mL*2)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物21c。MS:m/z 305.8[M+H] +
1H NMR(400MHz,CDCl 3)δppm 7.99(s,1H),4.55-4.70(m,1H),3.43(s,3H),3.36(d,J=2.26Hz,2H),2.98-3.06(m,1H),2.84-2.93(m,2H),2.28-2.46(m,2H),2.26(t,J=2.26Hz,1H),1.69-1.93(m,3H)。
第三步
向化合物21c(2.5g,8.18mmol,1.2eq)的N,N-二甲基甲酰胺(66mL)溶液中依次加入化合物17d(2.06g,6.81mmol,1eq),碘化亚铜(389.29mg,2.04mmol,0.3eq),N,N-二异丙基乙胺(1.32g,10.22mmol,1.5eq,1.78mL)和四(三苯基)膦钯(393.67mg,340.68μmol,0.05eq)并置换三次氮气,在80℃下反应1.5小时。反 应完全后,反应液减压浓缩,用水(100mL)稀释,乙酸乙酯(100mL*6)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:0)纯化得化合物21e。MS:m/z 481.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.20(s,1H),8.01-8.03(m,1H),7.95(s,1H),7.58(s,1H),4.66-4.78(m,1H),3.74-3.87(m,2H),3.46(s,3H),3.22-3.32(m,1H),2.98-3.10(m,2H),2.72(s,3H),2.37-2.54(m,2H),1.86-2.00(m,3H)。
第四步
向化合物21e(2.1g,4.37mmol,1eq)的乙醇(160mL)和水(40mL)混合溶液中依次加入铁粉(1.22g,21.83mmol,5eq)和氯化铵(1.17g,21.83mmol,5eq),加毕反应液于80℃下反应1.5小时。反应完全后,反应液冷却至室温,硅藻土过滤,滤液并减压浓缩得粗品,粗品在25℃下后用二氯甲烷:甲醇=40mL/4mL超声5分钟,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:9)纯化得化合物21f。MS:m/z 451.0[M+H] +
第五步
将化合物21f(200mg,443.53μmol,1eq)溶于甲醇(150mL)中,并置换三次氮气,后加入二氧化铂(100.72mg,443.53μmol,1eq),再置换三次氢气,在25℃下常压下(15psi)反应2小时。反应完全后,经硅藻土过滤,滤液减压浓缩得粗品,后经薄层制备色谱(甲醇:二氯甲烷=1:10)纯化得化合物21g。MS:m/z 453.2[M+H] +
第六步
将化合物21g(64mg,141.30μmol,1eq),甲烷磺酸(2-二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2'-氨基-1,1'-联苯-2-基)钯(II)(25.62mg,28.26μmol,0.2eq)和碳酸铯(69.06mg,211.95μmol,1.5eq)置于反应瓶并抽换三次氮气,随后向混合物中加入无水二氧六环(12mL)并在100℃下反应3.5小时。反应完全后,反应液减压浓缩,先经薄层制备色谱(甲醇:二氯甲烷=1:20)纯化,再经超临界流体色谱(柱子:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%氨水-乙醇];乙醇%:35%-35%)纯化得化合物21和22。
化合物21,保留时间4.362分钟,MS:m/z 417.0[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.29(s,1H),7.86(s,1H),7.47(s,1H),7.35(s,1H),6.40-6.48(m,2H),6.24-6.34(m,1H),4.19-4.31(m,1H),3.58-3.68(m,1H),3.30-3.45(m,5H),2.93-3.02(m,1H),2.82-2.88(m,1H),2.61-2.70(m,1H),2.35-2.43(m,4H),1.73-1.83(m,3H)。
化合物22,保留时间4.534分钟,MS:m/z 417.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.30(s,1H),7.86(s,1H),7.49(s,1H),7.35(s,1H),6.41-6.48(m,2H),6.26-6.35(m,1H),4.19-4.32(m,1H),3.58-3.67(m,1H),3.31-3.45(m,5H),2.92-3.03(m,1H),2.81-2.89(m,1H),2.60-2.71(m,1H),2.36-2.43(m,4H),1.75-1.83(m,3H)。
实施例23
Figure PCTCN2021082686-appb-000058
第一步
0℃下,向化合物11g(0.8g,3.50mmol,579.71μL,1eq)的四氢呋喃(10mL)溶液中加入钠氢(209.92mg,5.25mmol,60%纯度,1.5eq)和17b(2.08g,14.00mmol,1.51mL,80%纯度,4eq),加毕在20℃下反应4小时。反应完全后,反应液加水(5mL)萃灭,再加水(50mL)稀释,乙酸乙酯萃取(50mL*2),饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩并经柱层析(乙酸乙酯:石油醚=0:1~1:1)纯化得化合物23b。MS:m/z 266.8[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.00(s,1H),4.12-4.24(m,4H),3.93(t,J=5.6Hz,2H),3.45(s,3H),2.38(t,J=2.4Hz,1H)。
第二步
将化合物23b(695.18mg,2.61mmol,1eq),化合物17d(0.79g,2.61mmol,1eq),碘化亚铜(148.94mg,782.03μmol,0.3eq),四(三苯基)膦钯(150.61mg,130.34μmol,0.05eq)和N,N-二异丙基乙胺(505.35mg, 3.91mmol,681.07μL,1.5eq)的N,N-二甲基甲酰胺(15mL)溶液置换三次氮气,随后于80℃下反应1小时,反应完全后,反应液减压浓缩,加水(100mL)稀释,二氯甲烷萃取(100mL*3),饱和食盐水(100mL)洗涤,无水硫酸钠那干燥,过滤,滤液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:20)纯化得化合物23d。MS:m/z 442.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.14(s,1H),7.88-7.97(m,2H),7.55(s,1H),4.56(s,2H),4.20-4.27(m,2H),4.03(t,J=5.6Hz,2H),3.44(s,3H),2.71(s,3H)。
第三步
向化合物23d(0.7g,1.58mmol,1eq)的乙醇(12mL)和水(3mL)混合溶液中依次加入铁粉(443.38mg,7.92mmol,5eq)和氯化铵(423.74mg,7.92mmol,5eq),加毕反应液于80℃下反应2小时。反应完全后,反应液冷却至室温,硅藻土过滤并用乙醇(200mL)洗涤,洗涤液减压浓缩得粗品,粗品经柱层析(甲醇:二氯甲烷=0:1~1:20)纯化得化合物23e。MS:m/z 412.1[M+H] +
第四步
将化合物23e(0.05g,121.41μmol,1eq),碳酸铯(79.11mg,242.81μmol,2eq)和甲烷磺酸(2-二环己基膦)-3,6-二甲氧基-2',4',6'-三异丙基-1,1'-联苯)(2'-氨基-1,1'-联苯-2-基)钯(II)(22.01mg,24.28μmol,0.2eq)的无水二氧六环(10mL)溶液置换三次氮气,随后于100℃反应5小时,反应完全后,反应液减压浓缩并经柱层析(甲醇:二氯甲烷=0:1~1:20)纯化得化合物23。MS:m/z 376.1[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.87(s,1H),7.95(s,1H),7.71(s,1H),7.47(s,1H),6.91(s,1H),4.58(s,2H),4.09-4.30(m,4H),3.45(s,3H),2.49(s,3H)。
实施例24
Figure PCTCN2021082686-appb-000059
第一步
化合物23(0.05g,133.20μmol,1eq),二氧化铂(6.05mg,26.64μmol,0.2eq)的甲醇(5mL)溶液在氢气氛围下(一个大气压),于25℃反应2.5小时,反应完全后,垫硅藻土过滤,滤液减压浓缩并经薄层制备色谱(甲醇:二氯甲烷=1:15)纯化得化合物24。MS:m/z 380.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 9.67(s,1H),7.95(s,1H),7.43(s,1H),7.32(s,1H),6.84(s,1H),4.27(t,J=5.0Hz,2H),3.84(t,J=5.0Hz,2H),3.58(t,J=5.0Hz,2H),3.46(s,3H),3.08-3.18(m,2H),2.47(s,3H),1.75-1.86(m,2H)。
实施例25
Figure PCTCN2021082686-appb-000060
第一步
化合物23(0.05g,133.20μmol,1eq),10%钯/碳(8.79mg,含水50%)的甲醇(2mL)溶液在氢气氛围下(一个大气压),于25℃反应0.5h,反应完全后,垫硅藻土过滤,滤液减压浓缩并经制备高效液相色谱(柱子:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:0%-25%,7分钟)纯化得化合物25。MS:m/z 378.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 8.24(s,1H),7.82(s,1H),7.61(s,1H),7.40(s,1H),7.12(s,1H),6.46(d,J=12.0Hz,1H),6.06-6.16(m,1H),4.15-4.27(m,2H),3.85-4.05(m,4H),3.41(s,3H),2.44(s,3H)。
生物测试数据:
实验例1:DNA依赖性蛋白激酶(DNA-PK)抑制活性筛选实验
本实验测试于Eurofins
实验材料及方法:
人源DNA-PK;Mg/ATP;GST-cMyc-p53;EDTA;Ser15抗体;ATP:10μM。
实验方法(Eurofins Pharma Discovery Service):
将DNA-PK(h)在含有50nM GST-cMyc-p53和Mg/ATP(根据需要的浓度)的测定缓冲液中温育。通过添加Mg/ATP混合物引发反应。在室温下温育30分钟后,加入含有EDTA的终止溶液终止反应。最后,添加检测缓冲液(含有标记的抗GST单克隆抗体和针对磷酸化p53的铕标记的抗磷酸Ser15抗体)。然后以时间分辨荧光模式读板,并根据公式HTRF=10000×(Em665nm/Em620nm)测定均匀时间分辨荧光(HTRF)信号。
实验结果:
表1 DNA-PK激酶活性测试结果
供试品 DNA-PK激酶抑制活IC 50(nM) 供试品 DNA-PK激酶抑制活IC 50(nM)
化合物1 0.45 化合物14 0.3
化合物2 1.2 化合物15 0.1
化合物3 0.4 化合物16 1
化合物4 0.3 化合物17 0.4
化合物5 10 化合物18 14
化合物6 4 化合物19 81
化合物7 0.8 化合物20 14
化合物8 4 化合物21 4
化合物9 2 化合物22 34
化合物10 2 化合物23 5
化合物11 5 化合物24 19
化合物12 1 化合物25 4
化合物13 3 - -
结论:本发明化合物具有显著的DNA-PK激酶抑制活性。
实验例2:药代动力学评价
实验方法
受试化合物与10%N-甲基吡咯烷酮/90%(25%羟丙基-β-环糊精)水混合,涡旋并超声,制备得到0.08mg/mL近似澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雄性小鼠,静脉注射给予候选化合物溶液,剂量为0.4mg/kg。受试化合物与10%N-甲基吡咯烷酮/90%(25%羟丙基-β-环糊精)水混合,涡旋并超声,制备得到0.2mg/mL近似澄清溶液,微孔滤膜过滤后备用。选取18至20克的Balb/c雄性小鼠,口服给予候选化合物溶液,剂量为2mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
各参数定义:
IV:静脉注射;PO:口服给药;C 0:静脉注射后瞬时的需要浓度;C max:给药后出现的血药浓度最高值;T max:给药后达到药峰浓度所需的时间;T 1/2:血药浓度下降一半所需的时间;V dss:表观分布容积,指药物在体内达到动态平衡时体内药量与血药浓度的比例常数。Cl:清除率,指单位时间从体内清除的药物表观分布容积数;T last:最后一个检测点的时间;AUC 0-last:药时曲线下面积,指血药浓度曲线对时间轴所包围的面积;Bioavailability(生物利用度):药物被吸收进入血液循环的速度和程度的一种量度,是评价药物吸收程度的重要指标。
实验结果见表2。
表2 化合物血浆中的PK测试结果
Figure PCTCN2021082686-appb-000061
“--”是指未测试或未获得数据。
结论:本发明化合物展现了较长的半衰期、较低的清除率和较高的药物暴露量,具有较优的体内药物代谢动力学性质。

Claims (12)

  1. 式(III)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021082686-appb-100001
    其中,
    L 1选自-(CH 2) n-、-O(CH 2) p-、
    Figure PCTCN2021082686-appb-100002
    L 2选自C 1-3烷基、C 2-3烯基和C 2-3炔基;
    R 1选自H、OH、F、Cl、Br、I和C 1-3烷氧基,所述C 1-3烷氧基任选被1、2或3个R a取代;
    R a选自H、F、Cl、Br和I;
    n选自1、2和3;
    p选自1、2和3;
    Y 1选自环丙基和C 1-3烷基,所述C 1-3烷基任选被1、2、3、4或5个F取代;
    Y 2选自F、Cl、Br、I、环丙基和C 1-3烷基,所述C 1-3烷基任选被OH或1、2、3、4或5个F取代。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其式(III)所示化合物或其药学上可接受的盐选自式(II)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021082686-appb-100003
    其中,L 1、L 2和R 1如权利要求1所定义。
  3. 根据权利要求1或2所述化合物或其药学上可接受的盐,其中,L 1选自-CH 2-、-CH 2CH 2-、-OCH 2CH 2-、 -OCH 2CH 2CH 2-、
    Figure PCTCN2021082686-appb-100004
  4. 根据权利要求1或2所述化合物或其药学上可接受的盐,其中,L 2选自--C≡C--、-CH 2CH=CH-、-CH=CH-、-CH 2CH 2CH 2-、-CH 2CH 2-和-CH 2-。
  5. 根据权利要求1或2所述化合物或其药学上可接受的盐,其中,R 1选自H、F和OCH 3
  6. 根据权利要求1~5任意一项所述化合物或其药学上可接受的盐,其化合物选自
    Figure PCTCN2021082686-appb-100005
    其中,q选自1和2;
    R 1如权利要求1或5所定义;
    L 2如权利要求1或4所定义。
  7. 根据权利要求1~5任意一项所述化合物或其药学上可接受的盐,其化合物选自
    Figure PCTCN2021082686-appb-100006
    Figure PCTCN2021082686-appb-100007
    其中,
    Figure PCTCN2021082686-appb-100008
    选自Z式和E式;
    m选自1和2;
    q选自1和2;
    R 1如权利要求1或5所定义。
  8. 下式化合物或其药学上可接受的盐,
    Figure PCTCN2021082686-appb-100009
    Figure PCTCN2021082686-appb-100010
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其化合物选自,
    Figure PCTCN2021082686-appb-100011
  10. 根据权利要求1~9任意一项所述的化合物或其药学上可接受的盐在制备DNA-PK抑制剂相关药物上的应用。
  11. 根据权利要求10所述的应用,其中,所述DNA-PK抑制剂相关药物作为单一药物在具有其他DNA修复途径缺陷的肿瘤中发挥治疗效果。
  12. 根据权利要求10所述的应用,所述DNA-PK抑制剂相关药物通过与放化疗药物联用,增强对实体瘤和血液瘤的抑制作用。
PCT/CN2021/082686 2020-03-31 2021-03-24 作为dna-pk抑制剂的大环类化合物 WO2021197159A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010248999.7 2020-03-31
CN202010248999 2020-03-31
CN202010948794 2020-09-10
CN202010948794.X 2020-09-10
CN202110293356 2021-03-18
CN202110293356.9 2021-03-18

Publications (1)

Publication Number Publication Date
WO2021197159A1 true WO2021197159A1 (zh) 2021-10-07

Family

ID=77927708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082686 WO2021197159A1 (zh) 2020-03-31 2021-03-24 作为dna-pk抑制剂的大环类化合物

Country Status (2)

Country Link
TW (1) TW202144361A (zh)
WO (1) WO2021197159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036156A1 (zh) * 2021-09-07 2023-03-16 首药控股(北京)股份有限公司 Dna-pk选择性抑制剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOLDBERG FREDERICK W., FINLAY M. RAYMOND V., TING ATTILLA K. T., BEATTIE DAVID, LAMONT GILLIAN M., FALLAN CHARLENE, WRIGLEY GAIL L: "The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5- a ]pyridin-6-yl)amino]-9-(tetrahydro-2 H -pyran-4-yl)-7,9-dihydro-8 H -purin-8-one (AZD7648), a Potent and Selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 63, no. 7, 9 April 2020 (2020-04-09), US, pages 3461 - 3471, XP055826430, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.9b01684 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036156A1 (zh) * 2021-09-07 2023-03-16 首药控股(北京)股份有限公司 Dna-pk选择性抑制剂及其制备方法和用途

Also Published As

Publication number Publication date
TW202144361A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
TWI807228B (zh) 作為dna-pk抑制劑的嘧啶并吡咯類化合物
WO2021180181A1 (zh) 嘧啶并杂环类化合物及其应用
TWI768550B (zh) 作為dna-pk抑制劑的嘧啶并吡咯類螺環化合物及其衍生物
TWI765640B (zh) 作為dna-pk抑制劑的氨基嘧啶化合物及其衍生物
CN117295727A (zh) 作为parp7抑制剂的哒嗪酮类化合物
CN116234551A (zh) 一类1,7-萘啶类化合物及其应用
WO2021197159A1 (zh) 作为dna-pk抑制剂的大环类化合物
JP7418051B2 (ja) フルオロピロロピリジン系化合物及びその使用
JP7311207B2 (ja) Mnk阻害剤としてのピロロトリアジン系化合物
CN113874379B (zh) 作为Cdc7抑制剂的四并环类化合物
CN114761407A (zh) 作为高选择性ros1抑制剂的化合物及其应用
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
CN114026079B (zh) 一种sglt2/dpp4抑制剂及其应用
CN112752749B (zh) 作为pd-l1免疫调节剂的氟乙烯基苯甲酰胺基化合物
RU2796163C1 (ru) Пиримидоимидазольные соединения, применяемые в качестве ингибиторов днк-pk
CN114072396A (zh) 作为dna-pk抑制剂的喹啉和噌啉衍生物
WO2023241618A1 (zh) 氨基嘧啶类化合物及其应用
WO2024012456A1 (zh) 哌嗪桥取代的杂环并嘧啶类化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21780276

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2023)